A key feature in many biological systems is the self-assembly of proteins into specific quaternary structures, which often determine and regulate protein function. Assessment of protein oligomerisation is vital for a detailed understanding of complex biological processes. In this context, molecular mass is an important parameter, as it serves as a direct measure of oligomerisation.
Mass photometry provides high resolution distributions of molecular mass with single molecule sensitivity. This makes our technology effective for detecting rare species that form less than 1% of the main sample population.
Oligomeric states
​
Many proteins adopt a particular oligomeric form under certain conditions. In Figure 1, mass photometry characterises four different proteins: protein A, beta-amylase, urease and thyroglobulin. Through this characterisation, these proteins showcase a range of behaviours – from purely monomeric (as in Protein A) to a dynamic equilibrium between multiple states.
Antibody oligomerisation
​
2G12 IgG is a monoclonal antibody against the HIV envelope glycoprotein gp120. In Figure 2, mass photometry reveals the distribution of 2G12 monomers and dimers with baseline separation.
Related publications
Dissecting FOXP2 oligomerization and DNA binding
Häußermann et al., Angewandte Chemie 2019, 8(23), 7662-7667
​
FOXP2 (Forkhead box protein P2) is a transcription factor. It contains several functional domains commonly involved in both nucleic acid binding and protein oligomerisation, whose roles in FOXP2 activity remain largely unknown. In this publication, mass photometry was used to quantify the interaction of FOXP2 with itself. By measuring mass distributions of the different variants of FOXP2, the authors were able to reveal the interplay between its domains.
​